Method Calendar.TimeRanges.TimeRange()->`-()
- Method
`+
 Method `-
 
- TimeRangeres =- Calendar.TimeRanges.TimeRange()+- n
 - TimeRangeres =- Calendar.TimeRanges.TimeRange()+- offset
 - TimeRangeres =- Calendar.TimeRanges.TimeRange()-- m
 - TimeRangeres =- Calendar.TimeRanges.TimeRange()-- x
- Description
- 
This calculates the (promoted) time period either n step away or with a given offset. These functions does use add to really do the job: t+n t->add(n) t is a time period t-n t->add(-n) offset is a time period t+offset t->add(1,offset) n is an integer t-offset t->add(-1,offset) n+t t->add(n) n-t illegal offset+t offset->add(1,t) | note this! offset-t offset->add(-1,t) | Mathematic rules: x+(t-x) == t x is an integer or a time period (x+t)-x == t t is a time period (t+x)-x == t o-(o-t) == t o is a time period t++ == t+1 t-- == t-1 
- Note
- 
a-b does not give the distance between the start of a and b. Use the distance() function to calculate that. The integer used to `+, `- and add are the number of steps the motion will be. It does never represent any fixed amount of time, like seconds or days.