Network Working Group
Request for Comments: 3637
Category: Standards Track
C.M. Heard, Ed.
Consultant
September 2003

Definitions of Managed Objects

for the Ethernet WAN Interface Sublayer

Status of this Memo

This document specifies an Internet standards track protocol for the Internet community, and requests discussion and suggestions for improvements. Please refer to the current edition of the "Internet Official Protocol Standards" (STD 1) for the standardization state and status of this protocol. Distribution of this memo is unlimited.

Copyright Notice

Copyright © The Internet Society (2003). All Rights Reserved.

Abstract

This document defines a portion of the Management Information Base (MIB) for use with network management protocols in TCP/IP based internets. In particular, it defines objects for managing the Ethernet Wide Area Network (WAN) Interface Sublayer (WIS).

The MIB module defined in this memo is an extension of the Synchronous Optical Network/Synchronous Digital Hierarchy (SONET/SDH) Interface MIB and is implemented in conjunction with it and with the Ethernet-like Interface MIB, the 802.3 Medium Attachment Unit MIB, the Interfaces Group MIB, and the Inverted Stack Table MIB.

Table of Contents

   1.  Conventions. . . . . . . . . . . . . . . . . . . . . . . . . .  2
   2.  The Internet-Standard Management Framework . . . . . . . . . .  2
   3.  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . .  3
       3.1.  Relationship to the SONET/SDH Interface MIB. . . . . . .  3
       3.2.  Relationship to the Ethernet-like Interface MIB. . . . .  4
       3.3.  Relationship to the 802.3 MAU MIB. . . . . . . . . . . .  4
       3.4.  Use of the ifTable . . . . . . . . . . . . . . . . . . .  4
             3.4.1.  Layering Model . . . . . . . . . . . . . . . . .  5
             3.4.2.  Use of ifTable for LLC Layer/MAC Layer
                     Reconciliation Sublayer/Physical Coding Sublayer  5
             3.4.3.  Use of ifTable for SONET/SDH Path Layer. . . . .  5
             3.4.4.  Use of ifTable for SONET/SDH Medium/Section/
                     Line Layer . . . . . . . . . . . . . . . . . . .  5
   
       3.5.  SONET/SDH Terminology. . . . . . . . . . . . . . . . . .  6
       3.6.  Mapping of IEEE 802.3 Managed Objects. . . . . . . . . .  7
       3.7.  Mapping of SNMP Objects to WIS Station Management
             Registers. . . . . . . . . . . . . . . . . . . . . . . . 12
       3.8.  Structure of the MIB Module  . . . . . . . . . . . . . . 14
             3.8.1.  etherWisDeviceTable. . . . . . . . . . . . . . . 14
             3.8.2.  etherWisSectionCurrentTable. . . . . . . . . . . 15
             3.8.3.  etherWisPathCurrentTable . . . . . . . . . . . . 15
             3.8.4.  etherWisFarEndPathCurrentTable . . . . . . . . . 15
   4.  Object Definitions . . . . . . . . . . . . . . . . . . . . . . 16
   5.  Intellectual Property Statement. . . . . . . . . . . . . . . . 30
   6.  Acknowledgments. . . . . . . . . . . . . . . . . . . . . . . . 30
   7.  Security Considerations. . . . . . . . . . . . . . . . . . . . 31
   8.  References . . . . . . . . . . . . . . . . . . . . . . . . . . 32
       8.1.  Normative References . . . . . . . . . . . . . . . . . . 32
       8.2.  Informative References . . . . . . . . . . . . . . . . . 33
   Appendix A: Collection of Performance Data Using WIS
       MDIO Registers . . . . . . . . . . . . . . . . . . . . . . . . 34
   Contributors . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
   Editor's Address . . . . . . . . . . . . . . . . . . . . . . . . . 36
   Full Copyright Statement . . . . . . . . . . . . . . . . . . . . . 37

1. Conventions

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL", when they appear in this document, are to be interpreted as described in BCP 14, RFC 2119 [RFC2119].

2. The Internet-Standard Management Framework

For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].

Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].

3. Overview

   The objects defined in this memo are used in conjunction with objects
   defined in the Interfaces Group MIB [RFC2863], the SONET/SDH
   Interface MIB [RFC3592], and the 802.3 MAU MIB [RFC3636] to manage
   the Ethernet Wide Area Network (WAN) Interface Sublayer (WIS) defined
   in [802.3ae].  The WIS contains functions to perform OC-192c/VC-4-64c
   framing and scrambling.  It resides between the Physical Coding
   Sublayer (PCS) and the Physical Medium Attachment (PMA) sublayer
   within a 10GBASE-W 10 Gb/s WAN-compatible physical layer device (PHY)
   and may be used in conjunction with any of the PCS, PMA, and Physical
   Medium Dependent (PMD) sublayers defined in [802.3ae] for 10GBASE-W
   PHYs.  Three types of 10GBASE-W PHYs are defined, distinguished by
   the type of optics employed:  10GBASE-SW, 10GBASE-LW, and 10GBASE-EW.
   The objects defined in this memo may be used to manage an Ethernet
   interface employing any type of 10GBASE-W PHY.  They do not apply to
   any other kind of interface.  In particular, they do not apply to
   so-called Ethernet Line Terminating Equipment (ELTE) residing within
   a SONET network element that uses the 10GBASE-W PMA/PMD sublayers but
   otherwise acts as SONET Line Terminating Equipment (LTE).

The objects presented here -- along with those incorporated by reference from the Interfaces Group MIB, the SONET/SDH Interface MIB, and the 802.3 MAU MIB -- are intended to provide exact representations of the mandatory attributes in the oWIS managed object class (i.e., the members of the pWISBasic package) defined in Clause 30 and Annex 30A of [802.3ae]. They are also intended to provide approximate representations of the optional attributes (i.e., the members of the pWISOptional package). Some objects with no analogues in oWIS are defined to support WIS testing features required by Clause 50 of [802.3ae].

3.1. Relationship to the SONET/SDH Interface MIB

Since the Ethernet WAN Interface Sublayer was designed to be SONET- compatible, information similar to that provided by most of the members of the oWIS managed object class is available from objects defined in the SONET-MIB [RFC3592]. Thus, the MIB module defined in this memo is a sparse augmentation of the SONET-MIB -- in other words, every table defined here is an extension of some table in the SONET-MIB -- and its compliance statement REQUIRES that an agent implementing the objects defined in this memo also implement the relevant SONET-MIB objects. That includes all objects required by sonetCompliance2 as well as some that it leaves optional.

It should be noted that some of the objects incorporated by reference from the SONET-MIB -- specifically, the threshold objects and interval counter objects -- provide only approximate representations of the corresponding oWIS attributes, as detailed in Section 3.6. An alternative approach would have been to define new objects to exactly match the oWIS definitions. That approach was rejected because the SONET-MIB objects are already used in deployed systems to manage the SONET sublayers of ATM over SONET and PPP over SONET interfaces, and it was deemed undesirable to use a different scheme to manage the SONET sublayers of 10 Gb/s WAN-compatible Ethernet interfaces. Note that the approach adopted by this memo requires no hardware support beyond that mandated by [802.3ae] subclause 50.3.11.

3.2. Relationship to the Ethernet-like Interface MIB

An interface which includes the Ethernet WIS is, by definition, an Ethernet-like interface, and an agent implementing the objects defined in this memo MUST implement the objects required by the dot3Compliance2 compliance statement in the EtherLike-MIB.

3.3. Relationship to the 802.3 MAU MIB

Support for the mauModIfCompl3 compliance statement of the MAU-MIB [RFC3636] is REQUIRED for all Ethernet-like interfaces. The MAU-MIB is needed in order to allow applications to control and/or determine the media type in use. That is important for devices than can support both the 10GBASE-R 10 Gb/s LAN format (which does not include the WIS) and the 10GBASE-W 10 Gb/s WAN format (which does include the WIS). The MAU-MIB also provides the means to put a device in standby mode or to reset it; the latter may be used to re-initialize the WIS.

3.4. Use of the ifTable

This section specifies how the ifTable, as defined in [RFC2863], is used for the Ethernet WIS application.

3.4.1. Layering Model

Ethernet interfaces that employ the WIS are layered as defined in [802.3ae]. The corresponding use of the ifTable [RFC2863] is shown in the figure below.

          _____________________________   _
         |    LLC Layer                |  |
         +-----------------------------+  |
         |    MAC Layer                |  |
         +-----------------------------+  > 1 ifEntry
         |    Reconciliation Sublayer  |  |   ifType: ethernetCsmacd(6)
         +-----------------------------+  |
         |    Physical Coding Sublayer |  |
         +-----------------------------+  +
         |    Path Layer               |  > 1 ifEntry
         +-----------------------------+  +   ifType: sonetPath(50)
         |    Line Layer               |  |
         +-----------------------------+  |
         |    Section Layer            |  > 1 ifEntry
         +-----------------------------+  |   ifType: sonet(39)
         |    Physical Medium Layer    |  |
          -----------------------------   -

Figure 1 - Use of ifTable for an Ethernet WIS port

The exact configuration and multiplexing of the layers is maintained in the ifStackTable [RFC2863] and in the ifInvStackTable [RFC2864].

3.4.2. Use of ifTable for LLC Layer/MAC Layer/Reconciliation

Sublayer/Physical Coding Sublayer

The ifTable MUST be used as specified in [RFC3635] and [RFC3636] for the LLC Layer/MAC Layer/Reconciliation Sublayer/Physical Coding Sublayer.

3.4.3. Use of ifTable for SONET/SDH Path Layer

The ifTable MUST be used as specified in [RFC3592] for the SONET/SDH Path Layer. The value of ifHighSpeed is set to 9585. ifSpeed reports a value of 4294967295.

3.4.4. Use of ifTable for SONET/SDH Medium/Section/Line Layer

The ifTable MUST be used as specified in [RFC3592] for the SONET/SDH Medium/Section/Line Layer. The value of ifHighSpeed is set to 9953. ifSpeed reports a value of 4294967295.

3.5. SONET/SDH Terminology

The SONET/SDH terminology used in [802.3ae] is mostly the same as in [RFC3592], but there are a few differences. In those cases the definitions in [802.3ae] take precedence. The specific differences are as follows.

Unequipped

This defect is not defined by [802.3ae]. An implementation that supports it SHOULD report it by setting the sonetPathUnequipped bit in the appropriate instance of sonetPathCurrentStatus.

Signal Label Mismatch

This defect is called Payload Label Mismatch (PLM) in [802.3ae]. It is reported by setting both the sonetPathSignalLabelMismatch bit in the appropriate instance of sonetPathCurrentStatus (defined in [RFC3592]) and the etherWisPathPLM bit in the corresponding instance of etherWisPathCurrentStatus (defined below).

Loss of Codegroup Delineation

[802.3ae] defines Loss of Codegroup Delineation (LCD) as occurring when the Physical Coding Sublayer is unable to locate 64B/66B code group boundaries. There is no analogous defect defined in [RFC3592]. It is reported by setting the etherWisPathLCD bit in the appropriate instance of the object etherWisPathCurrentStatus defined below.

STS-Path Remote Defect Indication

[802.3ae] mandates the use of ERDI-P (Enhanced Remote Defect Indication - Path) defined in [T1.231] to signal remote server defects (triggered by path AIS or path LOP) and remote payload defects (triggered by Payload Label Mismatch or Loss of Codegroup Delineation). [RFC3592] defines the one-bit RDI-P (Remote Defect Indication - Path), which signals remote server detects (i.e., path AIS and path LOP) only. An implementation of the MIB module defined in this memo MUST set the sonetPathSTSRDI bit in the appropriate instance of sonetPathCurrentStatus when it receives an ERDI-P server defect indication from the remote end. Both ERDI-P payload defects and ERDI-P server defects are reported in the object etherWisFarEndPathCurrentStatus defined below.

Path Coding Violations

In [802.3ae] the path layer CV count is based on block errors and not BIP-8 errors, i.e., it is incremented only once for each B3 byte that indicates incorrect parity, regardless of the number of bits in error. Note that Section 8.4.5.1 of [T1.231] allows either path BIP-8 errors or path block errors to be used for the path layer error count.

3.6. Mapping of IEEE 802.3 Managed Objects

This section contains the mapping between oWIS managed objects defined in [802.3ae] and managed objects defined in this document and in associated MIB modules, i.e., the IF-MIB [RFC2863], the SONET-MIB [RFC3592], and the MAU-MIB [RFC3636].

   IEEE 802.3 Managed Object    Corresponding SNMP Object

oWIS - pWISBasic package

    aWISID                      IF-MIB - ifIndex
    aSectionStatus              SONET-MIB - sonetSectionCurrentStatus
    aLineStatus                 SONET-MIB - sonetLineCurrentStatus
    aPathStatus                 etherWisPathCurrentStatus
    aFarEndPathStatus           etherWisFarEndPathCurrentStatus

oWIS - pWISOptional package

    aSectionSESThreshold        SONET-MIB - sonetSESthresholdSet
    aSectionSESs                SONET-MIB - sonetSectionCurrentSESs +
                                            sonetSectionIntervalSESs
    aSectionESs                 SONET-MIB - sonetSectionCurrentESs +
                                            sonetSectionIntervalESs
    aSectionSEFSs               SONET-MIB - sonetSectionCurrentSEFSs +
                                            sonetSectionIntervalSEFSs
    aSectionCVs                 SONET-MIB - sonetSectionCurrentCVs +
                                               sonetSectionIntervalCVs
    aJ0ValueTX                  etherWisSectionCurrentJ0Transmitted
    aJ0ValueRX                  etherWisSectionCurrentJ0Received
    aLineSESThreshold           SONET-MIB - sonetSESthresholdSet
    aLineSESs                   SONET-MIB - sonetLineCurrentSESs +
                                            sonetLineIntervalSESs
    aLineESs                    SONET-MIB - sonetLineCurrentESs +
                                            sonetLineIntervalESs
    aLineCVs                    SONET-MIB - sonetLineCurrentCVs +
                                            sonetLineIntervalCVs
    aFarEndLineSESs             SONET-MIB - sonetFarEndLineCurrentSESs +
                                            sonetFarEndLineIntervalSESs
    aFarEndLineESs              SONET-MIB - sonetFarEndLineCurrentESs +
                                            sonetFarEndLineIntervalESs
    aFarEndLineCVs              SONET-MIB - sonetFarEndLineCurrentCVs +
                                            sonetFarEndLineIntervalCVs
    aPathSESThreshold           SONET-MIB - sonetSESthresholdSet
    aPathSESs                   SONET-MIB - sonetPathCurrentSESs +
                                            sonetPathIntervalSESs
    aPathESs                    SONET-MIB - sonetPathCurrentESs +
                                            sonetPathIntervalESs
    aPathCVs                    SONET-MIB - sonetPathCurrentCVs +
                                            sonetPathIntervalCVs
    aJ1ValueTX                  etherWisPathCurrentJ1Transmitted
    aJ1ValueRX                  etherWisPathCurrentJ1Received
    aFarEndPathSESs             SONET-MIB - sonetFarEndPathCurrentSESs +
                                            sonetFarEndPathIntervalSESs
    aFarEndPathESs              SONET-MIB - sonetFarEndPathCurrentESs +
                                            sonetFarEndPathIntervalESs
    aFarEndPathCVs              SONET-MIB - sonetFarEndPathCurrentCVs +
                                            sonetFarEndPathIntervalCVs

It should be noted that the threshold and counter objects imported from the SONET-MIB are not completely equivalent to the corresponding IEEE 802.3 objects. The specific differences are as follows:

   IEEE 802.3 Managed Object    How Corresponding SNMP Object Differs
   
   aSectionSESThreshold      This object is defined in [802.3ae] as an
                             integer with one instance per interface.
                             sonetSESthresholdSet is an enumerated value
                             that has one instance per network element;
                             it controls the thresholds for all layers
                             simultaneously and allows only certain
                             discrete values to be selected.
   
   aSectionSESs              This object is defined in [802.3ae] as a
                             generalized nonresetable counter.  The
                             objects sonetSectionCurrentSESs and
                             sonetSectionIntervalSESs are 15-minute
                             interval counters.
   
   aSectionESs               This object is defined as a generalized
                             nonresetable counter in [802.3ae].  The
                             objects sonetSectionCurrentESs and
                             sonetSectionIntervalESs are 15-minute
                             interval counters.
   
   aSectionSEFSs             This object is defined as a generalized
                             nonresetable counter in [802.3ae].  The
                             objects sonetSectionCurrentSEFSs and
                             sonetSectionIntervalSEFSs are 15-minute
                             interval counters.
   
   aSectionCVs               This object is defined as a generalized
                             nonresetable counter in [802.3ae], and it
                             is not subject to inhibiting.  The objects
                             sonetSectionCurrentCVs and
                             sonetSectionIntervalCVs are 15-minute
                             interval counters, and they are inhibited
                             (not incremented) during one-second
                             intervals that qualify as severely errored
                             seconds.
   
   aLineSESThreshold         This object is defined in [802.3ae] as an
                             integer with one instance per interface.
                             sonetSESthresholdSet is an enumerated value
                             that has one instance per network element;
                             it controls the thresholds for all layers
                             simultaneously and allows only certain
                             discrete values to be selected.
   
   aLineSESs                 This object is defined as a generalized
                             nonresetable counter in [802.3ae], and it
                             is not subject to inhibiting.  The objects
                             sonetLineCurrentSESs and
                             sonetLineIntervalSESs are 15-minute
                             interval counters, and they are inhibited
                             (not incremented) during one-second
                             intervals that qualify as unavailable
                             seconds.
   
   aLineESs                  This object is defined as a generalized
                             nonresetable counter in [802.3ae], and it
                             is not subject to inhibiting.  The objects
                             sonetLineCurrentESs and
                             sonetLineIntervalESs are 15-minute interval
                             counters, and they are inhibited (not
                             incremented) during one-second intervals
                             that qualify as unavailable seconds.
   
   aLineCVs                  This object is defined as a generalized
                             nonresetable counter in [802.3ae], and it
                             is not subject to inhibiting.  The objects
                             sonetLineCurrentCVs and
                             sonetLineIntervalCVs are 15-minute interval

counters, and they are inhibited (not incremented) during one-second intervals that qualify either as severely errored seconds or as unavailable seconds.

   aFarEndLineSESs           This object is defined as a generalized
                             nonresetable counter in [802.3ae], and it
                             is not subject to inhibiting.  The objects
                             sonetFarEndLineCurrentSESs and
                             sonetFarEndLineIntervalSESs are 15-minute
                             interval counters, and they are inhibited
                             (not incremented) during one-second
                             intervals that qualify as unavailable
                             seconds.
   
   aFarEndLineESs            This object is defined as a generalized
                             nonresetable counter in [802.3ae], and it
                             is not subject to inhibiting.  The objects
                             sonetFarEndLineCurrentESs and
                             sonetFarEndLineIntervalESs are 15-minute
                             interval counters, and they are inhibited
                             (not incremented) during one-second
                             intervals that qualify as unavailable
                             seconds.
   
   aFarEndLineCVs            This object is defined as a generalized
                             nonresetable counter in [802.3ae], and it
                             is not subject to inhibiting.  The objects
                             sonetFarEndLineCurrentCVs and
                             sonetFarEndLineIntervalCVs are 15-minute
                             interval counters, and they are inhibited
                             (not incremented) during one-second
                             intervals that qualify either as severely
                             errored seconds or as unavailable seconds.
   
   aPathSESThreshold         This object is defined in [802.3ae] as an
                             integer with one instance per interface.
                             sonetSESthresholdSet is an enumerated value
                             that has one instance per network element;
                             it controls the thresholds for all layers
                             simultaneously and allows only certain
                             discrete values to be selected.
   
   aPathSESs                 This object is defined as a generalized
                             nonresetable counter in [802.3ae], and it
                             is not subject to inhibiting.  The objects
                             sonetPathCurrentSESs and
                             sonetPathIntervalSESs are 15-minute

interval counters, and they are inhibited (not incremented) during one-second intervals that qualify as unavailable seconds. In addition, [802.3ae] includes PLM-P and LCD-P defects in the criteria for declaring path layer severely errored seconds, while [RFC3592] does not.

   aPathESs                  This object is defined as a generalized
                             nonresetable counter in [802.3ae], and it
                             is not subject to inhibiting.  The objects
                             sonetPathCurrentESs and
                             sonetPathIntervalESs are 15-minute interval
                             counters, and they are inhibited (not
                             incremented) during one-second intervals
                             that qualify as unavailable seconds.  In
                             addition, [802.3ae] includes PLM-P and
                             LCD-P defects in the criteria for declaring
                             path layer errored seconds, while [RFC3592]
                             does not.
   
   aPathCVs                  This object is defined as a generalized
                             nonresetable counter in [802.3ae], and it
                             is not subject to inhibiting.  The objects
                             sonetPathCurrentCVs and
                             sonetPathIntervalCVs are 15-minute interval
                             counters, and they are inhibited (not
                             incremented) during one-second intervals
                             that qualify either as severely errored
                             seconds or as unavailable seconds.
   
   aFarEndPathSESs           This object is defined as a generalized
                             nonresetable counter in [802.3ae], and it
                             is not subject to inhibiting.  The objects
                             sonetFarEndPathCurrentSESs and
                             sonetFarEndPathIntervalSESs are 15-minute
                             interval counters, and they are inhibited
                             (not incremented) during one-second
                             intervals that qualify as unavailable
                             seconds.  In addition, [802.3ae] includes
                             far-end PLM-P and LCD-P defects in the
                             criteria for declaring far-end path layer
                             severely errored seconds, while [RFC3592]
                             does not.
   
   aFarEndPathESs            This object is defined as a generalized
                             nonresetable counter in [802.3ae], and it
                             is not subject to inhibiting.  The objects

sonetFarEndPathCurrentESs and sonetFarEndPathIntervalESs are 15-minute interval counters, and they are inhibited (not incremented) during one-second intervals that qualify as unavailable seconds. In addition, [802.3ae] includes far-end PLM-P and LCD-P defects in the criteria for declaring far-end path layer errored seconds, while [RFC3592] does not.

   aFarEndPathCVs            This object is defined as a generalized
                             nonresetable counter in [802.3ae], and it
                             is not subject to inhibiting.  The objects
                             sonetFarEndPathCurrentCVs and
                             sonetFarEndPathIntervalCVs are 15-minute
                             interval counters, and they are inhibited
                             (not incremented) during one-second
                             intervals that qualify either as severely
                             errored seconds or as unavailable seconds.
   
   Note:  despite the semantic differences between the threshold objects
   and counter objects imported from the SONET-MIB and the corresponding
   IEEE 802.3 objects, the hardware support mandated by [802.3ae]
   subclause 50.3.11 suffices for both.  See Appendix A for details.

3.7. Mapping of SNMP Objects to WIS Station Management Registers

Some of the objects defined in this memo or incorporated by reference from the SONET-MIB [RFC3592] or the MAU-MIB [RFC3636] require WIS-specific hardware support. [802.3ae] subclause 50.3.11 specifies WIS management interface requirements, including a required subset of the WIS Management Data Input/Output (MDIO) registers defined in [802.3ae] subclause 45.2.2. The table below provides a cross- reference between those managed objects and the WIS MDIO registers from the subset in [802.3ae] subclause 50.3.11 required to support them. Note that the MDIO interface is optional; however, if it is not implemented, then the capabilities of the required register subset must be provided by other means.

   SNMP Object                                     WIS MDIO Register(s)
   
   ETHER-WIS - etherWisDeviceTxTestPatternMode     10G WIS control 2
   ETHER-WIS - etherWisDeviceRxTestPatternMode     10G WIS control 2
   ETHER-WIS - etherWisDeviceRxTestPatternErrors   10G WIS test pattern
                                                          error counter
   
   SONET-MIB - sonetMediumType                     none required
   SONET-MIB - sonetMediumTimeElapsed              none required
   SONET-MIB - sonetMediumValidIntervals           none required
   SONET-MIB - sonetMediumLineCoding               none required
   SONET-MIB - sonetMediumLineType                 none required
   SONET-MIB - sonetMediumCircuitIdentifier        none required
   SONET-MIB - sonetMediumInvalidIntervals         none required
   SONET-MIB - sonetMediumLoopbackConfig           none required
   SONET-MIB - sonetSESthresholdSet                none required
   
   ETHER-WIS - etherWisSectionCurrentJ0Transmitted 10G WIS J0 transmit
   ETHER-WIS - etherWisSectionCurrentJ0Received    10G WIS J0 receive
   
   SONET-MIB - sonetSectionCurrentStatus           10G WIS status 3
   SONET-MIB - sonetSectionCurrentESs              \
   SONET-MIB - sonetSectionCurrentSESs              \
   SONET-MIB - sonetSectionCurrentSEFSs              | 10G WIS status 3
   SONET-MIB - sonetSectionCurrentCVs                |        +
   SONET-MIB - sonetSectionIntervalESs               | 10G WIS section
   SONET-MIB - sonetSectionIntervalSESs              | BIP error count
   SONET-MIB - sonetSectionIntervalSEFSs            /
   SONET-MIB - sonetSectionIntervalCVs             /
   SONET-MIB - sonetSectionIntervalValidData       none required
   
   SONET-MIB - sonetLineCurrentStatus              10G WIS status 3
   SONET-MIB - sonetLineCurrentESs                 \
   SONET-MIB - sonetLineCurrentSESs                 \
   SONET-MIB - sonetLineCurrentCVs                   | 10G WIS status 3
   SONET-MIB - sonetLineCurrentUASs                  |        +
   SONET-MIB - sonetLineIntervalESs                  | 10G WIS line
   SONET-MIB - sonetLineIntervalSESs                 | BIP errors
   SONET-MIB - sonetLineIntervalCVs                 /
   SONET-MIB - sonetLineIntervalUASs               /
   SONET-MIB - sonetLineIntervalValidData          none required
   
   SONET-MIB - sonetFarEndLineCurrentESs           \
   SONET-MIB - sonetFarEndLineCurrentSESs           \
   SONET-MIB - sonetFarEndLineCurrentCVs             | 10G WIS status 3
   SONET-MIB - sonetFarEndLineCurrentUASs            |        +
   SONET-MIB - sonetFarEndLineIntervalESs            | 10G WIS far end
   SONET-MIB - sonetFarEndLineIntervalSESs           | line BIP errors
   SONET-MIB - sonetFarEndLineIntervalCVs           /
   SONET-MIB - sonetFarEndLineIntervalUASs         /
   SONET-MIB - sonetFarEndLineIntervalValidData    10G WIS status 3
   
   ETHER-WIS - etherWisPathCurrentStatus           10G WIS status 3
   ETHER-WIS - etherWisPathCurrentJ1Transmitted    10G WIS J1 transmit
   ETHER-WIS - etherWisPathCurrentJ1Received       10G WIS J1 receive
   SONET-MIB - sonetPathCurrentWidth               none required
   SONET-MIB - sonetPathCurrentStatus              10G WIS status 3
   SONET-MIB - sonetPathCurrentESs                 \
   SONET-MIB - sonetPathCurrentSESs                 \
   SONET-MIB - sonetPathCurrentCVs                   | 10G WIS status 3
   SONET-MIB - sonetPathCurrentUASs                  |        +
   SONET-MIB - sonetPathIntervalESs                  | 10G WIS
   SONET-MIB - sonetPathIntervalSESs                 | path block
   SONET-MIB - sonetPathIntervalCVs                 /  error count
   SONET-MIB - sonetPathIntervalUASs               /
   SONET-MIB - sonetPathIntervalValidData          none required
   
   ETHER-WIS - etherWisFarEndPathCurrentStatus     10G WIS status 3
   
   SONET-MIB - sonetFarEndPathCurrentESs           \
   SONET-MIB - sonetFarEndPathCurrentSESs           \
   SONET-MIB - sonetFarEndPathCurrentCVs             | 10G WIS status 3
   SONET-MIB - sonetFarEndPathCurrentUASs            |        +
   SONET-MIB - sonetFarEndPathIntervalESs            | 10G WIS far end
   SONET-MIB - sonetFarEndPathIntervalSESs           | path block
   SONET-MIB - sonetFarEndPathIntervalCVs           /  error count
   SONET-MIB - sonetFarEndPathIntervalUASs         /
   SONET-MIB - sonetFarEndPathIntervalValidData    10G WIS status 3
   
   MAU-MIB - ifMauIfIndex                          none required
   MAU-MIB - ifMauIndex                            none required
   MAU-MIB - ifMauType                             10G WIS control 2
   MAU-MIB - ifMauStatus                           WIS control 1
   MAU-MIB - ifMauMediaAvailable                   \ WIS status 1 +
   MAU-MIB - ifMauMediaAvailableStateExits         / 10G WIS status 3
   MAU-MIB - ifMauJabberState                      none required
   MAU-MIB - ifMauJabberingStateEnters             none required
   MAU-MIB - ifMauFalseCarriers                    none required
   MAU-MIB - ifMauDefaultType                      10G WIS control 2
   MAU-MIB - ifMauAutoNegSupported                 none required
   MAU-MIB - ifMauTypeListBits                     10G WIS status 2

3.8. Structure of the MIB Module

Four tables are defined in this MIB module.

3.8.1. etherWisDeviceTable

The purpose of this table is to define managed objects to control the WIS test pattern mode. These objects are required to support mandatory and optional WIS test features specified in [802.3ae] subclause 50.3.8.

The etherWisDeviceTable is a sparse augmentation of the sonetMediumTable of the SONET-MIB -- in other words, for each entry in the etherWisDeviceTable there MUST be an entry in the sonetMediumTable and the same ifIndex value MUST be used for both entries.

3.8.2. etherWisSectionCurrentTable

The purpose of this table is to define managed objects for the transmitted and received section trace messages (J0 byte).

The etherWisSectionCurrentTable is a sparse augmentation of the sonetSectionCurrentTable of the SONET-MIB -- in other words, for each entry in the etherWisSectionCurrentTable there MUST be an entry in the sonetSectionCurrentTable and the same ifIndex value MUST be used for both entries.

3.8.3. etherWisPathCurrentTable

The purpose of this table is to define managed objects for the current WIS path layer status and for the transmitted and received path trace messages (J1 byte). The path layer status object is provided because the WIS supports some near-end path status conditions that are not reported in sonetPathCurrentStatus.

The etherWisPathCurrentTable is a sparse augmentation of the sonetPathCurrentTable of the SONET-MIB -- in other words, for each entry in the etherWisPathCurrentTable there MUST be an entry in the sonetPathCurrentTable and the same ifIndex value MUST be used for both entries.

3.8.4. etherWisFarEndPathCurrentTable

The purpose of this table is to define a managed object for the current status of the far end of the path. This object is provided because the WIS supports some far-end path status conditions that are not reported in sonetPathCurrentStatus.

The etherWisFarEndPathCurrentTable is a sparse augmentation of the sonetFarEndPathCurrentTable of the SONET-MIB -- in other words, for each entry in the etherWisFarEndPathCurrentTable there MUST be an entry in the sonetFarEndPathCurrentTable and the same ifIndex value MUST be used for both entries.

4. Object Definitions

ETHER-WIS DEFINITIONS ::= BEGIN

IMPORTS

       MODULE-IDENTITY, OBJECT-TYPE,
       Gauge32, transmission
           FROM SNMPv2-SMI
       ifIndex
           FROM IF-MIB
       MODULE-COMPLIANCE, OBJECT-GROUP
           FROM SNMPv2-CONF
       sonetMediumStuff2, sonetSectionStuff2,
       sonetLineStuff2, sonetFarEndLineStuff2,
       sonetPathStuff2, sonetFarEndPathStuff2,
       sonetMediumType, sonetMediumLineCoding,
       sonetMediumLineType, sonetMediumCircuitIdentifier,
       sonetMediumLoopbackConfig, sonetSESthresholdSet,
       sonetPathCurrentWidth
           FROM SONET-MIB;

etherWisMIB MODULE-IDENTITY

       LAST-UPDATED "200309190000Z"  -- September 19, 2003
           ORGANIZATION "IETF Ethernet Interfaces and Hub MIB
                        Working Group"
           CONTACT-INFO
              "WG charter:
                 http://www.ietf.org/html.charters/hubmib-charter.html

Mailing Lists:

General Discussion: hubmib@ietf.org

To Subscribe: hubmib-request@ietf.org

In Body: subscribe your_email_address

                Chair: Dan Romascanu
               Postal: Avaya Inc.
                       Atidim Technology Park, Bldg. 3
                       Tel Aviv 61131
                       Israel
                  Tel: +972 3 645 8414
               E-mail: dromasca@avaya.com
               
               Editor: C. M. Heard
               Postal: 600 Rainbow Dr. #141
                       Mountain View, CA 94041-2542
                       USA
                  Tel: +1 650-964-8391
               E-mail: heard@pobox.com"

DESCRIPTION

"The objects in this MIB module are used in conjunction

with objects in the SONET-MIB and the MAU-MIB to manage

the Ethernet WAN Interface Sublayer (WIS).

The following reference is used throughout this MIB module:

[IEEE 802.3 Std] refers to:

IEEE Std 802.3, 2000 Edition: 'IEEE Standard for Information technology - Telecommunications and information exchange between systems - Local and metropolitan area networks - Specific requirements - Part 3: Carrier sense multiple access with collision detection (CSMA/CD) access method and physical layer specifications', as amended by IEEE Std 802.3ae-2002, 'IEEE Standard for Carrier Sense Multiple Access with Collision Detection (CSMA/CD) Access Method and Physical Layer Specifications - Media Access Control (MAC) Parameters, Physical Layer and Management Parameters for 10 Gb/s Operation', 30 August 2002.

         Of particular interest are Clause 50, 'WAN Interface
         Sublayer (WIS), type 10GBASE-W', Clause 30, '10Mb/s,
         100Mb/s, 1000Mb/s, and 10Gb/s MAC Control, and Link
         Aggregation Management', and Clause 45, 'Management
         Data Input/Output (MDIO) Interface'.

Copyright © The Internet Society (2003). This version

of this MIB module is part of RFC 3637; see the RFC

itself for full legal notices."

       REVISION    "200309190000Z"  -- September 19, 2003
       DESCRIPTION "Initial version, published as RFC 3637."
       
       ::= { transmission 134 }

-- The main sections of the module

   etherWisObjects     OBJECT IDENTIFIER ::= { etherWisMIB 1 }
   
   etherWisObjectsPath OBJECT IDENTIFIER ::= { etherWisMIB 2 }
   
   etherWisConformance OBJECT IDENTIFIER ::= { etherWisMIB 3 }

-- groups in the Ethernet WIS MIB module

   etherWisDevice      OBJECT IDENTIFIER ::= { etherWisObjects 1 }
   
   etherWisSection     OBJECT IDENTIFIER ::= { etherWisObjects 2 }
   
   etherWisPath        OBJECT IDENTIFIER ::= { etherWisObjectsPath 1 }
   
   etherWisFarEndPath  OBJECT IDENTIFIER ::= { etherWisObjectsPath 2 }

-- The Device group

-- These objects provide WIS extensions to
-- the SONET-MIB Medium Group.

etherWisDeviceTable OBJECT-TYPE

       SYNTAX  SEQUENCE OF EtherWisDeviceEntry
       MAX-ACCESS  not-accessible
       STATUS  current
       DESCRIPTION
          "The table for Ethernet WIS devices"
        ::= { etherWisDevice 1 }

etherWisDeviceEntry OBJECT-TYPE

       SYNTAX  EtherWisDeviceEntry
       MAX-ACCESS  not-accessible
       STATUS  current
       DESCRIPTION
          "An entry in the Ethernet WIS device table.  For each
          instance of this object there MUST be a corresponding
          instance of sonetMediumEntry."
       INDEX  { ifIndex }
        ::= { etherWisDeviceTable 1 }

EtherWisDeviceEntry ::=

SEQUENCE {

           etherWisDeviceTxTestPatternMode     INTEGER,
           etherWisDeviceRxTestPatternMode     INTEGER,
           etherWisDeviceRxTestPatternErrors   Gauge32
           }

etherWisDeviceTxTestPatternMode OBJECT-TYPE

       SYNTAX  INTEGER {
                   none(1),
                   squareWave(2),
                   prbs31(3),
                   mixedFrequency(4)
               }
       MAX-ACCESS  read-write
       STATUS  current
       DESCRIPTION
          "This variable controls the transmit test pattern mode.
          The value none(1) puts the the WIS transmit path into
          the normal operating mode.  The value squareWave(2) puts
          the WIS transmit path into the square wave test pattern
          mode described in [IEEE 802.3 Std.] subclause 50.3.8.1.
          The value prbs31(3) puts the WIS transmit path into the
          PRBS31 test pattern mode described in [IEEE 802.3 Std.]
          subclause 50.3.8.2.  The value mixedFrequency(4) puts the
          WIS transmit path into the mixed frequency test pattern
          mode described in [IEEE 802.3 Std.] subclause 50.3.8.3.
          Any attempt to set this object to a value other than
          none(1) when the corresponding instance of ifAdminStatus
          has the value up(1) MUST be rejected with the error
          inconsistentValue, and any attempt to set the corresponding
          instance of ifAdminStatus to the value up(1) when an
          instance of this object has a value other than none(1)
          MUST be rejected with the error inconsistentValue."
       REFERENCE
          "[IEEE 802.3 Std.], 50.3.8, WIS test pattern generator and
          checker, 45.2.2.6, 10G WIS control 2 register (2.7), and
          45.2.2.7.2, PRBS31 pattern testing ability (2.8.1)."
        ::= { etherWisDeviceEntry 1 }

etherWisDeviceRxTestPatternMode OBJECT-TYPE

       SYNTAX  INTEGER {
                   none(1),
                   prbs31(3),
                   mixedFrequency(4)
               }
       MAX-ACCESS  read-write
       STATUS  current
       
       DESCRIPTION
          "This variable controls the receive test pattern mode.
          The value none(1) puts the the WIS receive path into the
          normal operating mode.  The value prbs31(3) puts the WIS
          receive path into the PRBS31 test pattern mode described
          in [IEEE 802.3 Std.] subclause 50.3.8.2.  The value
          mixedFrequency(4) puts the WIS receive path into the mixed
          frequency test pattern mode described in [IEEE 802.3 Std.]
          subclause 50.3.8.3.  Any attempt to set this object to a
          value other than none(1) when the corresponding instance
          of ifAdminStatus has the value up(1) MUST be rejected with
          the error inconsistentValue, and any attempt to set the
          corresponding instance of ifAdminStatus to the value up(1)
          when an instance of this object has a value other than
          none(1) MUST be rejected with the error inconsistentValue."
       REFERENCE
          "[IEEE 802.3 Std.], 50.3.8, WIS test pattern generator and
          checker, 45.2.2.6, 10G WIS control 2 register (2.7), and
          45.2.2.7.2, PRBS31 pattern testing ability (2.8.1)."
        ::= { etherWisDeviceEntry 2 }

etherWisDeviceRxTestPatternErrors OBJECT-TYPE

       SYNTAX  Gauge32 ( 0..65535 )
       MAX-ACCESS  read-write
       STATUS  current
       DESCRIPTION
          "This object counts the number of errors detected when the
          WIS receive path is operating in the PRBS31 test pattern
          mode.  It is reset to zero when the WIS receive path
          initially enters that mode, and it increments each time
          the PRBS pattern checker detects an error as described in
          [IEEE 802.3 Std.] subclause 50.3.8.2 unless its value is
          65535, in which case it remains unchanged.  This object is
          writeable so that it may be reset upon explicit request
          of a command generator application while the WIS receive
          path continues to operate in PRBS31 test pattern mode."
       REFERENCE
          "[IEEE 802.3 Std.], 50.3.8, WIS test pattern generator and
          checker, 45.2.2.7.2, PRBS31 pattern testing ability
          (2.8.1), and 45.2.2.8, 10G WIS test pattern error counter
          register (2.9)."
        ::= { etherWisDeviceEntry 3 }

-- The Section group

-- These objects provide WIS extensions to
-- the SONET-MIB Section Group.

etherWisSectionCurrentTable OBJECT-TYPE

       SYNTAX  SEQUENCE OF EtherWisSectionCurrentEntry
       MAX-ACCESS  not-accessible
       STATUS  current
       DESCRIPTION
          "The table for the current state of Ethernet WIS sections."
        ::= { etherWisSection 1 }

etherWisSectionCurrentEntry OBJECT-TYPE

       SYNTAX  EtherWisSectionCurrentEntry
       MAX-ACCESS  not-accessible
       STATUS  current
       DESCRIPTION
          "An entry in the etherWisSectionCurrentTable.  For each
          instance of this object there MUST be a corresponding
          instance of sonetSectionCurrentEntry."
       INDEX  { ifIndex }
        ::= { etherWisSectionCurrentTable 1 }

EtherWisSectionCurrentEntry ::=

SEQUENCE {

etherWisSectionCurrentJ0Transmitted OCTET STRING,

etherWisSectionCurrentJ0Received OCTET STRING

}

etherWisSectionCurrentJ0Transmitted OBJECT-TYPE

       SYNTAX  OCTET STRING (SIZE (16))
       MAX-ACCESS  read-write
       STATUS  current
       DESCRIPTION
          "This is the 16-octet section trace message that
          is transmitted in the J0 byte.  The value SHOULD
          be '89'h followed by fifteen octets of '00'h
          (or some cyclic shift thereof) when the section
          trace function is not used, and the implementation
          SHOULD use that value (or a cyclic shift thereof)
          as a default if no other value has been set."
       REFERENCE
          "[IEEE 802.3 Std.], 30.8.1.1.8, aJ0ValueTX."
        ::= { etherWisSectionCurrentEntry 1 }

etherWisSectionCurrentJ0Received OBJECT-TYPE

       SYNTAX  OCTET STRING (SIZE (16))
       MAX-ACCESS  read-only
       STATUS  current
       DESCRIPTION
          "This is the 16-octet section trace message that
          was most recently received in the J0 byte."
       REFERENCE
          "[IEEE 802.3 Std.], 30.8.1.1.9, aJ0ValueRX."
        ::= { etherWisSectionCurrentEntry 2 }

-- The Path group

-- These objects provide WIS extensions to
-- the SONET-MIB Path Group.

etherWisPathCurrentTable OBJECT-TYPE

       SYNTAX  SEQUENCE OF EtherWisPathCurrentEntry
       MAX-ACCESS  not-accessible
       STATUS  current
       DESCRIPTION
          "The table for the current state of Ethernet WIS paths."
        ::= { etherWisPath 1 }

etherWisPathCurrentEntry OBJECT-TYPE

       SYNTAX  EtherWisPathCurrentEntry
       MAX-ACCESS  not-accessible
       STATUS  current
       DESCRIPTION
          "An entry in the etherWisPathCurrentTable.  For each
          instance of this object there MUST be a corresponding
          instance of sonetPathCurrentEntry."
       INDEX  { ifIndex }
        ::= { etherWisPathCurrentTable 1 }

EtherWisPathCurrentEntry ::=

SEQUENCE {

           etherWisPathCurrentStatus           BITS,
           etherWisPathCurrentJ1Transmitted    OCTET STRING,
           etherWisPathCurrentJ1Received       OCTET STRING
           }

etherWisPathCurrentStatus OBJECT-TYPE

       SYNTAX  BITS {
                   etherWisPathLOP(0),
                   etherWisPathAIS(1),
                   etherWisPathPLM(2),
                   etherWisPathLCD(3)
               }
       MAX-ACCESS  read-only
       STATUS  current
       DESCRIPTION
          "This variable indicates the current status of the
          path payload with a bit map that can indicate multiple
          defects at once.  The bit positions are assigned as
          follows:

etherWisPathLOP(0)

             This bit is set to indicate that an
             LOP-P (Loss of Pointer - Path) defect
             is being experienced.  Note:  when this
             bit is set, sonetPathSTSLOP MUST be set
             in the corresponding instance of
             sonetPathCurrentStatus.

etherWisPathAIS(1)

             This bit is set to indicate that an
             AIS-P (Alarm Indication Signal - Path)
             defect is being experienced.  Note:  when
             this bit is set, sonetPathSTSAIS MUST be
             set in the corresponding instance of
             sonetPathCurrentStatus.

etherWisPathPLM(1)

             This bit is set to indicate that a
             PLM-P (Payload Label Mismatch - Path)
             defect is being experienced.  Note:  when
             this bit is set, sonetPathSignalLabelMismatch
             MUST be set in the corresponding instance of
             sonetPathCurrentStatus.
       
          etherWisPathLCD(3)
             This bit is set to indicate that an
             LCD-P (Loss of Codegroup Delination - Path)
             defect is being experienced.  Since this
             defect is detected by the PCS and not by
             the path layer itself, there is no
             corresponding bit in sonetPathCurrentStatus."
       REFERENCE
          "[IEEE 802.3 Std.], 30.8.1.1.18, aPathStatus."
        ::= { etherWisPathCurrentEntry 1 }

etherWisPathCurrentJ1Transmitted OBJECT-TYPE

       SYNTAX  OCTET STRING (SIZE (16))
       MAX-ACCESS  read-write
       STATUS  current
       DESCRIPTION
          "This is the 16-octet path trace message that
          is transmitted in the J1 byte.  The value SHOULD
          be '89'h followed by fifteen octets of '00'h
          (or some cyclic shift thereof) when the path
          trace function is not used, and the implementation
          SHOULD use that value (or a cyclic shift thereof)
          as a default if no other value has been set."
       REFERENCE
          "[IEEE 802.3 Std.], 30.8.1.1.23, aJ1ValueTX."
        ::= { etherWisPathCurrentEntry 2 }

etherWisPathCurrentJ1Received OBJECT-TYPE

       SYNTAX  OCTET STRING (SIZE (16))
       MAX-ACCESS  read-only
       STATUS  current
       DESCRIPTION
          "This is the 16-octet path trace message that
          was most recently received in the J1 byte."
       REFERENCE
          "[IEEE 802.3 Std.], 30.8.1.1.24, aJ1ValueRX."
        ::= { etherWisPathCurrentEntry 3 }

-- The Far End Path group

-- These objects provide WIS extensions to
-- the SONET-MIB Far End Path Group.

etherWisFarEndPathCurrentTable OBJECT-TYPE

       SYNTAX  SEQUENCE OF EtherWisFarEndPathCurrentEntry
       MAX-ACCESS  not-accessible
       STATUS  current
       DESCRIPTION
          "The table for the current far-end state of Ethernet WIS
          paths."
        ::= { etherWisFarEndPath 1 }

etherWisFarEndPathCurrentEntry OBJECT-TYPE

       SYNTAX  EtherWisFarEndPathCurrentEntry
       MAX-ACCESS  not-accessible
       STATUS  current
       DESCRIPTION
          "An entry in the etherWisFarEndPathCurrentTable.  For each
          instance of this object there MUST be a corresponding
          instance of sonetFarEndPathCurrentEntry."
       INDEX  { ifIndex }
        ::= { etherWisFarEndPathCurrentTable 1 }

EtherWisFarEndPathCurrentEntry ::=

SEQUENCE {

           etherWisFarEndPathCurrentStatus     BITS
           }

etherWisFarEndPathCurrentStatus OBJECT-TYPE

       SYNTAX  BITS {
                   etherWisFarEndPayloadDefect(0),
                   etherWisFarEndServerDefect(1)
               }
       MAX-ACCESS  read-only
       STATUS  current
       DESCRIPTION
          "This variable indicates the current status at the
          far end of the path using a bit map that can indicate
          multiple defects at once.  The bit positions are
          assigned as follows:

etherWisFarEndPayloadDefect(0)

A far end payload defect (i.e., far end
PLM-P or LCD-P) is currently being signaled
in G1 bits 5-7.

          etherWisFarEndServerDefect(1)
             A far end server defect (i.e., far end
             LOP-P or AIS-P) is currently being signaled
             in G1 bits 5-7.  Note:  when this bit is set,
             sonetPathSTSRDI MUST be set in the corresponding
             instance of sonetPathCurrentStatus."
       REFERENCE
          "[IEEE 802.3 Std.], 30.8.1.1.25, aFarEndPathStatus."
        ::= { etherWisFarEndPathCurrentEntry 1 }
   
   --
   --     Conformance Statements
   --
   
   etherWisGroups      OBJECT IDENTIFIER ::= { etherWisConformance 1 }
   
   etherWisCompliances OBJECT IDENTIFIER ::= { etherWisConformance 2 }
   
   --     Object Groups

etherWisDeviceGroupBasic OBJECT-GROUP

       OBJECTS {
           etherWisDeviceTxTestPatternMode,
           etherWisDeviceRxTestPatternMode
           }
       STATUS  current
       DESCRIPTION
          "A collection of objects that support test
          features required of all WIS devices."
        ::= { etherWisGroups 1 }

etherWisDeviceGroupExtra OBJECT-GROUP

       OBJECTS {
           etherWisDeviceRxTestPatternErrors
           }
       STATUS  current
       DESCRIPTION
          "A collection of objects that support
          optional WIS device test features."
        ::= { etherWisGroups 2 }

etherWisSectionGroup OBJECT-GROUP

       OBJECTS {
           etherWisSectionCurrentJ0Transmitted,
           etherWisSectionCurrentJ0Received
           }
       STATUS  current
       DESCRIPTION
          "A collection of objects that provide
          required information about a WIS section."
        ::= { etherWisGroups 3 }

etherWisPathGroup OBJECT-GROUP

       OBJECTS {
           etherWisPathCurrentStatus,
           etherWisPathCurrentJ1Transmitted,
           etherWisPathCurrentJ1Received
           }
       STATUS  current
       DESCRIPTION
          "A collection of objects that provide
          required information about a WIS path."
        ::= { etherWisGroups 4 }

etherWisFarEndPathGroup OBJECT-GROUP

       OBJECTS {
           etherWisFarEndPathCurrentStatus
           }
       STATUS  current
       DESCRIPTION
          "A collection of objects that provide required
          information about the far end of a WIS path."
        ::= { etherWisGroups 5 }
   
   --     Compliance Statements

etherWisCompliance MODULE-COMPLIANCE

       STATUS  current
       DESCRIPTION
          "The compliance statement for interfaces that include
          the Ethernet WIS.  Compliance with the following
          external compliance statements is prerequisite:
       
          MIB Module             Compliance Statement
          ----------             --------------------
          IF-MIB                 ifCompliance3
          IF-INVERTED-STACK-MIB  ifInvCompliance
          EtherLike-MIB          dot3Compliance2
          MAU-MIB                mauModIfCompl3"
       
       MODULE  -- this module
           MANDATORY-GROUPS {
               etherWisDeviceGroupBasic,
               etherWisSectionGroup,
               etherWisPathGroup,
               etherWisFarEndPathGroup
               }
       
           OBJECT       etherWisDeviceTxTestPatternMode
           SYNTAX       INTEGER {
               none(1),
               squareWave(2),
               mixedFrequency(4)
               }
           DESCRIPTION
               "Support for values other than none(1),
               squareWave(2), and mixedFrequency(4)
               is not required."
       
           OBJECT       etherWisDeviceRxTestPatternMode
           SYNTAX       INTEGER {
               none(1),
               mixedFrequency(4)
               }
           DESCRIPTION
               "Support for values other than none(1)
               and mixedFrequency(4) is not required."
       
           GROUP        etherWisDeviceGroupExtra
           DESCRIPTION
               "Implementation of this group, along with support for
               the value prbs31(3) for etherWisDeviceTxTestPatternMode
               and etherWisDeviceRxTestPatternMode, is necessary if the
               optional PRBS31 test pattern mode is to be supported."
       
           OBJECT       etherWisDeviceRxTestPatternErrors
           WRITE-SYNTAX Gauge32 ( 0 )
           DESCRIPTION
               "An implementation is not required to
               allow values other than zero to be
               written to this object."

MODULE SONET-MIB

MANDATORY-GROUPS {

               sonetMediumStuff2,
               sonetSectionStuff2,
               sonetLineStuff2,
               sonetFarEndLineStuff2,
               sonetPathStuff2,
               sonetFarEndPathStuff2
               }
           
           OBJECT       sonetMediumType
           SYNTAX       INTEGER {
               sonet(1)
               }
           MIN-ACCESS   read-only
           DESCRIPTION
               "Write access is not required, nor is support
               for any value other than sonet(1)."
           
           OBJECT       sonetMediumLineCoding
           SYNTAX       INTEGER {
               sonetMediumNRZ(4)
               }
           MIN-ACCESS   read-only
           DESCRIPTION
               "Write access is not required, nor is support
               for any value other than sonetMediumNRZ(4)."
           
           OBJECT       sonetMediumLineType
           MIN-ACCESS   read-only
           DESCRIPTION
               "Write access is not required."
           
           OBJECT       sonetMediumCircuitIdentifier
           MIN-ACCESS   read-only
           DESCRIPTION
               "Write access is not required."
           
           OBJECT       sonetMediumLoopbackConfig
           SYNTAX       BITS {
               sonetNoLoop(0),
               sonetFacilityLoop(1)
               }
           MIN-ACCESS   read-only
           DESCRIPTION
               "Write access is not required, nor is support for values
               other than sonetNoLoop(0) and sonetFacilityLoop(1)."
           OBJECT       sonetSESthresholdSet
           MIN-ACCESS   read-only
           DESCRIPTION
               "Write access is not required, and only one
               of the enumerated values need be supported."
           
           OBJECT       sonetPathCurrentWidth
           SYNTAX       INTEGER {
               sts192cSTM64(6)
               }
           MIN-ACCESS   read-only
           DESCRIPTION
               "Write access is not required, nor is support
               for any value other than sts192cSTM64(6)."
        
        ::= { etherWisCompliances 1 }
   
   END

5. Intellectual Property Statement

The IETF takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights. Information on the IETF's procedures with respect to rights in standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made available for publication and any assurances of licenses to be made available, or the result of an attempt made to obtain a general license or permission for the use of such proprietary rights by implementors or users of this specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications, or other proprietary rights which may cover technology that may be required to practice this standard. Please address the information to the IETF Executive Director.

6. Acknowledgments

This document is a product of the IETF Hub MIB and AToM MIB Working Groups. It builds upon the work of the IEEE P802.3ae 10 Gigabit Ethernet Task Force.

7. Security Considerations

There are five managed objects defined in this MIB module that have a MAX-ACCESS clause of read-write: etherWisDeviceTxTestPatternMode, etherWisDeviceRxTestPatternMode, etherWisDeviceRxTestPatternErrors, etherWisSectionCurrentJ0Transmitted, and etherWisPathCurrentJ1Transmitted. Writing to these objects can have the following potentially disruptive effects on network operation:

  • changing the transmit or receive test pattern mode or modifying the accumulated error count from a PRBS31 pattern test on an administratively disabled 10GBASE-W interface, which can interfere with an in-progress pattern test;
  • modifying the transmitted section trace and/or path trace message on an operational 10GBASE-W interface, which can cause connectivity alarms to be raised at the remote of the link.

The user of this MIB module must therefore be aware that support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations.

The readable objects in this MIB module (i.e., those with MAX-ACCESS other than not-accessible) may be considered sensitive in some environments since, collectively, they provide information about the performance of network interfaces and can reveal some aspects of their configuration. In such environments it is important to control even GET and NOTIFY access to these objects and possibly even to encrypt their values when sending them over the network via SNMP.

SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.

It is RECOMMENDED that implementers consider the security features as provided by the SNMPv3 framework (see [RFC3410], section 8), including full support for the SNMPv3 cryptographic mechanisms (for authentication and privacy).

Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.

8. References

8.1. Normative References

   [RFC2119]   Bradner, S., "Key words for use in RFCs to Indicate
               Requirements Levels", BCP 14, RFC 2119, March 1997.
   
   [RFC2578]   McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
               Rose, M. and S. Waldbusser, "Structure of Management
               Information Version 2 (SMIv2)", STD 58, RFC 2578, April
               1999.
   
   [RFC2579]   McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
               Rose, M. and S. Waldbusser, "Textual Conventions for
               SMIv2", STD 58, RFC 2579, April 1999.
   
   [RFC2580]   McCloghrie, K., Perkins, D., Schoenwaelder, J., Case, J.,
               Rose, M. and S. Waldbusser, "Conformance Statements for
               SMIv2", STD 58, RFC 2580, April 1999.
   
   [RFC2863]   McCloghrie, K. and F. Kastenholz, "The Interfaces Group
               MIB", RFC 2863, June 2000.
   
   [RFC2864]   McCloghrie, K. and G. Hanson, "The Inverted Stack Table
               Extension to the Interfaces Group MIB", RFC 2864, June
               2000.
   
   [RFC3592]   Tesink, K., "Definitions of Managed Objects for the
               Synchronous Optical Network/Synchronous Digital Hierarchy
               (SONET/SDH) Interface Type", RFC 3592, September 2003.
   
   [T1.231]    American National Standard for Telecommunications -
               Digital Hierarchy - Layer 1 In-Service Digital
               Transmission Performance Monitoring, ANSI T1.231-1997,
               September 1997.
   
   [RFC3635]   Flick, J., "Definitions of Managed Objects for the
               Ethernet-like Interface Types", RFC 3635, September 2003.
   
   [RFC3636]   Flick, J., "Definitions of Managed Objects for IEEE 802.3
               Medium Attachment Units (MAUs)", RFC 3636, September
               2003.
   
   [802.3ae]   Institute of Electrical and Electronic Engineers, IEEE
               Std 802.3ae-2002, "IEEE Standard for Carrier Sense
               Multiple Access with Collision Detection (CSMA/CD) Access
               Method and Physical Layer Specifications - Media Access
               Control (MAC) Parameters, Physical Layer and Management
               Parameters for 10 Gb/s Operation", August 2002.

8.2. Informative References

   [RFC3410]   Case, J., Mundy, R., Partain, D. and B. Stewart,
               "Introduction and Applicability Statements for Internet-
               Standard Management Framework", RFC 3410, December 2002.

Appendix A: Collection of Performance Data Using WIS MDIO Registers

The purpose of this appendix is to illustrate how the WIS MDIO registers specified in [802.3ae] subclause 45.2.2 (and more specifically the subset required by [802.3ae] subclause 50.3.11) can be used to collect performance data either according to the conventions adopted by this document or according to the conventions specified in [802.3ae] Clause 30.

For an agent implementing the SNMP managed objects required by this document the first step in collecting WIS performance data would be to poll the 10G WIS status 3 register and the various error count registers (10G WIS section BIP error count, 10G WIS line BIP errors, 10G WIS far end line BIP errors, 10G WIS path block error count, and 10G WIS far end path block error count) once per second. The 10G WIS status 3 register bits are all latched until read and so would indicate whether a given defect occurred any time during the previous second. The error count registers roll over modulo 2^16 or 2^32, and so to find the number of errors within the previous second the agent would need to subtract (modulo 2^16 or 2^32) the current reading from the reading taken one second ago. Armed with that information, the agent could determine for any layer whether the one second interval was an errored second, a severely errored second (that requires comparison with a threshold unless a defect is present), or a severely errored frame second. Determining whether a given second is or is not part of unavailable time requires additional logic; the most straightforward and accurate method is the delay-line approach outlined in Appendix A of [RFC3592]. With that information available the agent would be able to determine by how much each current count should be incremented (including effects of inhibiting). Implementations that conform to [T1.231] would end each 15-minute interval on time-of-day clock 1/4 hour boundaries; if the delay-line approach is used then a time-of-day timestamp would accompany the one-second statistics. At the end of each interval the current registers would be pushed onto the history stack and then would be cleared. The xyxIntervalValidData flags would be set to False(2) if the number of samples was not between 890 and 910 or, in the case of far-end counts, if a near-end defect occurred during the just-completed interval (see [T1.231] Section 9.1.2.2 for details).

An agent implementing the [802.3ae] Clause 30 oWIS objects could also start by polling the 10G WIS status 3 register and the various error count registers to find the defects and error counts for the previous second, and it could determine the number of errors and whether the second was an errored second, a severely errored second, or a severely errored frame second in the same manner as above. The rest of the process would simply be to increment the generalized non- resetable counters without consideration of any inhibiting rules.

Contributors

Mike Ayers
1204 Knox Ave.
San Jose, CA 95122
USA

   Phone: +1 408 857 6810
   EMail: mike.ayers@earthling.net

John Flick
Hewlett-Packard Company
8000 Foothills Blvd. M/S 5557
Roseville, CA 95747-5557
USA

   Phone: +1 916 785 4018
   Fax:   +1 916 785 1199
   EMail: johnf@rose.hp.com

Kam Lam
Lucent Technologies
101 Crawfords Corner Road, Room 4C-616A
Holmdel, NJ 07733
USA

   Phone: +1 732 949 8338
   EMail: hklam@lucent.com

Kerry McDonald
Institute for Applied Supercomputing
California State University San Bernardino

EMail:

          kerry_mcd@hotmail.com
          kmcdonal@csci.csusb.edu
   
   K. C. Norseth
   L-3 Communications
   640 N. 2200 West.
   Salt Lake City, Utah 84116-0850
   USA
   
   Phone: +1 801 594 2809
   EMail: kenyon.c.norseth@L-3com.com
          kcn@norseth.com
   
   Kaj Tesink
   Telcordia Technologies
   331 Newman Springs Road
   P.O. Box 7020
   Red Bank, NJ  07701-7020
   USA
   
   Phone: +1 732 758 5254
   EMail: kaj@research.telcordia.com

Editor's Address

C. M. Heard
600 Rainbow Dr. #141
Mountain View, CA 94041-2542
USA

   Phone: +1 650 964 8391
   EMail: heard@pobox.com

Full Copyright Statement

Copyright © The Internet Society (2003). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to the Internet Society or other Internet organizations, except as needed for the purpose of developing Internet standards in which case the procedures for copyrights defined in the Internet Standards process must be followed, or as required to translate it into languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its successors or assignees.

This document and the information contained herein is provided on an "AS IS" basis and THE INTERNET SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgement

Funding for the RFC Editor function is currently provided by the Internet Society.